
Building Learning and
Tutoring Tools for
Object-Oriented
Simulation Systems

David McArthur

RAND

The research described in this report was sponsored by the De-
fense Advanced Research Projects Agency under RAND's Nation-
al Defense Research Institute, a Federally Funded Research and
Development Center supported by the Office of the Secretary of
Defense, Contract No. MDA903-85-C-0030; and by The RAND
Corporation as part of its program of public service.

Library of Congress Cataloging in Publication Data

McArthur, David, 1951-
Building learning and tutoring tools for

object-oriented simulation systems.

"R-3443-DARPA/RC."
"July 1987."
1. Digital computer simulation. 2. Decision-

making—Data processing. 3. SWIRL (Computer war game)
I. United States. Defense Advanced Research Projects
Agency. II. Title.
QA76.9.C65M39 1987 001.4'34 87-12677
ISBN 0-8330-0850-1

The RAND Publication Series: The Report is the principal
publication documenting and transmitting RAND's major
research findings and final research results. The RAND Note
reports other outputs of sponsored research for general
distribution. Publications of The RAND Corporation do not
necessarily reflect the opinions or policies of the sponsors of
RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

R-3443-DARPA/RC

Building Learning and
Tutoring Tools for
Object-Oriented
Simulation Systems

David McArthur

July 1987

Prepared for the
Defense Advanced Research Projects Agency

RAND
Approved for public release; distribution unlimited

PREFACE

For decades simulations have been useful tools for designing and
evaluating complex systems. Simulations permit the user to create
models of many different kinds of real entities, from military strategies
to jet engines. Often, it is preferable to manipulate a model of a real
system than the system itself; it may be too costly, slow, or dangerous
to work with the real system. Thus, simulations provide potentially
powerful tools for making important decisions.

In the past few years, there has been an interest in extending simu-
lations from design to training. Sophisticated simulations often embed
a considerable amount of expertise. For example, military simulations
can embed strategic knowledge concerning how to deploy resources
under a wide variety of circumstances. When simulations are used for
design and evaluation, the knowledge is used to execute various
behaviors. To use a simulation as a basis for training and learning, we
must permit its knowledge to be inspected, as well as executed, by the
student.

This report describes the author's efforts to transform an object-
oriented simulation into a useful environment for tutoring and learn-
ing. The study was conducted for the Information Processing Tech-
niques Office, Defense Advanced Projects Agency (DARPA), under
RAND's National Defense Research Institute (NDRI). The NDRI is a
Federally Funded Research and Development Center sponsored by the
Office of the Secretary of Defense. Additional support for the study
was provided by The RAND Corporation from its own funds.

The project had several goals:

• To determine the kinds of tools that must be added to a simula-
tion system to make it a useful environment for learning and
tutoring.

• To implement prototype versions of these tools.
• To examine the semantics of object-oriented languages and

determine their shortcomings for specifying simulations.
• To implement new simulation primitives for object-oriented

languages to permit them to support inspectable simulations for
tutoring and learning.

The findings should be of interest to persons engaged in developing
simulation languages, computer-based exploratory environments, or
intelligent tutoring systems.

SUMMARY

This report describes a collection of computer-based tools and tech-
niques we have been developing to permit complex simulations and
expert systems to be the basis for intelligent training systems. The
goal of our training environment is to help the naive user of such
software to learn the sophisticated knowledge it contains. Our main
approach is to supply the user with computer-based aids that facilitate
learning through practice. In learning through practice, the students
refine their knowledge of the skill by repeatedly testing it on a
sequence of well-chosen problems. The activities students must engage
in while learning through practice are similar across many decision-
making skills. Hence, our learning environment embeds several gen-
eral tools facilitating these activities, as well as an "expert system"
capable of solving problems in the domain.

In building these general tools for learning, our research strategy has
been to develop them in the context of a specific complex learning
situation. We have chosen to focus on SWIRL, a strategic war-gaming
simulation written at RAND in ROSS—an object-oriented simulation
language that is also a result of RAND research. Our aim is to provide
an environment in which students who are relatively naive about both
computers and military strategy can interactively learn to make mili-
tary strategic decisions as well as (if not better than) the simple
experts in SWIRL. The present report describes several of the com-
puter tools we have implemented to aid students in learning the objects
and strategies that compose SWIRL. These include facilities to
interactively create scenarios, inspect simulation objects, dynamically
modify object behaviors, and perform experiments with various military
strategies.

Our research has also had an important side-effect. In the course of
reimplementing the SWIRL simulation to be suitable for tutoring, we
discovered several conceptual problems with simulation languages and
object-oriented programming languages. In this report, we describe the
solutions we propose to these problems. They not only proved useful
in implementing our tutoring system, but should also be of interest to
those who design new and semantically cleaner object-oriented simula-
tion languages.

CONTENTS

PREFACE iii

SUMMARY v

FIGURES . ix

Section
I. INTRODUCTION AND OVERVIEW 1

II. SWIRL AS A LEARNING ENVIRONMENT 3

III. DESIRED FUNCTIONALITY OF THE SWIRL-BASED
LEARNING ENVIRONMENT 6

IV. CHANGES REQUIRED IN SWIRL AND ROSS 8
What SWIRL and ROSS Already Provide 8
Changes in the Organization of Knowledge in SWIRL ... 9
Changes in the Simulation Primitives of ROSS 17

V. LEARNING AND TUTORING TOOLS 21
Tools to Help Establish a Strategic Idea to Test 21
Tools to Help Establish a Problem . . . 27
Tools to Generate Results 31
Tools to Understand the Results of a Simulation 31

VI. CONCLUSIONS 37
Improving Object-Oriented Simulation Languages 37
Improved Primitives for Object-Oriented Simulation

Languages 38
Distributed Simulation and the Time Warp

Mechanism 39
Passive Exploratory Tools and Active Tutoring

Programs 40

REFERENCES 43

FIGURES

1. A view of a typical SWIRL scenario, showing penetrators,
GCIs, AWACS, SAMS, filter-centers, fighter-bases,
command-centers, and targets 4

2. An example of interactive scenario creation. The student
is creating a new instance of a filter-center at the
specified location 25

3. An example of interactive modification of the
communication network. The student has displayed
the current network and can change it by mousing
on the appropriate "communication ports" of the
objects 26

4. An example of interactive creation of penetrator flight
plans. The student can create a route by selecting the
turning points with a mouse 29

5. An example of the dynamic browser. The student is
inspecting the information associated with a specific
filter-center 34

6. A further example of the dynamic browser. The student
has now examined the knowledge associated with the
generic filter-center, including a specific behavior.
Parts of the behavior are mouse-sensitive and subject
to further description and browsing 35

I. INTRODUCTION AND OVERVIEW

During the last two years we have developed an automated environ-
ment for learning complex decisionmaking skills. Decisionmaking
skills, such as how to solve high-school algebra problems, how to make
effective strategic military decisions, or how to play chess, constitute
more than just a body of factual knowledge. The expert must learn
how to apply this knowledge to solve problems in the decisionmaking
domain. Thus, our system focuses on learning through practice, where
students refine their knowledge of the skill by repeatedly testing it on a
sequence of well-chosen problems. The activities students must engage
in while learning through practice are similar across many decision-
making skills. Hence, our learning environment embeds several gen-
eral tools facilitating these activities, as well as an "expert system"
capable of solving problems in the domain.

In building these general tools for learning, our research strategy has
been to develop them in the context of a specific complex learning
situation. We have chosen to focus on SWIRL, a strategic wargaming
simulation written at RAND in ROSS—an object-oriented simulation
language that is also a result of RAND research. Our goal is to provide
an environment in which students who are relatively naive about both
computers and military strategy can interactively learn to make mili-
tary strategic decisions as well as (if not better than) the simple
experts in SWIRL.

In this report we describe our SWIRL environment, focusing on
several of the tools that make it a powerful learning aid. Several
themes will run through the report. The first theme involves the rela-
tionship between active tutoring programs and more passive explora-
tory environments for learning. The tools we have developed fall more
in the latter category. The second main theme concerns the use of
object-oriented languages, such as ROSS, to provide faithful models of
the real-world objects and events they represent. Using any computer
system in a tutoring context places new demands on it. The main
demand that concerns us here is inspectability. If a system is to be a
useful tutoring aid, not only must its output be comprehensible to stu-
dents, but its internal reasoning and knowledge structures must be
accessible and understandable. We will discuss the lack of inspectabil-
ity of most object-oriented languages (including ROSS) and simula-
tions (including SWIRL). We will also describe the way we overcame
these shortcomings.

Section II describes SWIRL, discussing the military knowledge that
will be the target of learning. Section III gives an overview of the
functional goals our tutoring tools needed to achieve in order to pro-
mote learning the knowledge embedded in SWIRL. Section IV
describes some of the learning facilities that ROSS already provides to
assist in learning, noting also some of the features of ROSS that actu-
ally inhibit the development of a tutoring environment and that had to
be changed. Some of these changes represent a fundamental rethink-
ing of the semantics of object-oriented programming languages as
applied to simulation. In Section V we discuss in detail the learning
tools we added to the modified ROSS simulation environment. Section
VI concludes with a general discussion of some important lessons we
have learned in our research.

II. SWIRL AS A LEARNING ENVIRONMENT

SWIRL is a strategic military simulation written at RAND in
ROSS, an object-oriented simulation language (Klahr et al., 1982).
ROSS itself is the product of RAND research (McArthur, Klahr, and
Narain, 1985). SWIRL has several advantages as a domain for learn-
ing. First, it is a familiar testbed, because it was designed and imple-
mented at RAND; second, it is a simple but rich application. The
behaviors encoding the target strategic knowledge are well defined, on
the one hand, but challenging to learn on the other. Finally, since
SWIRL is written in an object-oriented language, the knowledge in
SWIRL is already organized in a modular fashion, so it should provide
a solid basis for a tutoring system.

In our air-battle domain, penetrators enter an airspace with a pre-
planned route and bombing mission. The goal of the defensive forces
is to eliminate those penetrators. The major actors or objects in this
setting include:

• Penetrators. These are the primary offensive objects. They
are assumed to enter the defensive air space with a mission
plan and route.

• GCIs. Ground control intercept radars detect incoming penetra-
tors and guide fighters to intercept penetrators.

• AW ACS. These are airborne radars that also detect and guide.
• SAMs. Surface-to-air missile installations have radar capabili-

ties and fire missiles at invading penetrators.
• Missiles. These are objects fired by SAMs.
• Filter Centers. They serve to integrate and interpret radar

reports; they send their conclusions to command centers.
• Fighter Bases. Bases are alerted by filter centers and send

fighters out to intercept penetrators when requested to by com-
mand centers.

• Fighters. Fighters receive messages from their base about their
target penetrator. They are guided to the penetrator by a radar
that is tracking the penetrator.

• Command Centers. These represent the top level in the
command-and-control hierarchy. Command centers receive
processed input about penetrators from filter centers and make
decisions about which resource (fighter base) should be allo-
cated to deal with a penetrator.

• Targets. Targets are the objects that penetrators intend to
eliminate.

Figure 1 shows an example snapshot of a representative air-battle
simulation. A complete description of the SWIRL domain can be
found in Klahr et al. (1982).

The objects that constitute SWIRL embed a great deal of strategic
military knowledge in their behaviors. Behaviors are pieces of code
associated with a particular type of object; they are invoked when an
appropriate message is given to an object of that type. For example,
the generic object command center has a behavior with a message pat-
tern (penetrator monitored by >gci is hostile). The code associated
with that pattern will be executed each time a message matching that
pattern is given to a particular command center. A matching message
might be (penetrator monitored by gcil is hostile), "gcil" is a particu-
lar ground control intercept that gets "bound" to the pattern variable

Fig. 1— A view of a typical SWIRL scenario, showing penetrators,
GCIs, AW ACS, SAMS, filter-centers, fighter-bases,

command-centers, and targets.

">gci". If such a message were sent to command-centerlO, for exam-
ple, it would invoke the strategic knowledge used to decide what action
to take when a hostile aircraft enters its region. More generally, we
can think of each object as a small expert system, and it is this expert
strategic knowledge that we would like students using the tutor to
learn.

In the tutoring environment we developed, the students' goal is to
learn strategic knowledge embedded in the defensive "experts" of
SWIRL. At the very least, we expect that they will become conversant
with the objects that compose this domain, and their capabilities. A
second level of competence we expect from most students is that they
become as accomplished as the experts embedded in the current
SWIRL simulation. They should be able to make decisions that defend
against a given configuration of incoming penetrators as effectively as
the automated experts. We believe it is quite likely that many students
could reach a yet higher level in our learning environment. We expect
that they will be able to design or learn their own versions of the
SWIRL behaviors that outperform those in the simulation. Thus, their
learning may actually help to improve the simulation's knowledge base.

III. DESIRED FUNCTIONALITY OF
THE SWIRL-BASED LEARNING

ENVIRONMENT

In order to achieve these levels of skill our tutoring environment
attempts to assist various processes involved in learning through prac-
tice. The general activities it supports include:

• Watching SWIRL solve problems. Watching a master solve a
decisionmaking problem is a good way to acquire some initial
knowledge of a domain. In the context of SWIRL, a problem is
defined as a particular scenario stipulating a configuration of
offensive forces and defining all necessary parameters of the
battle situation. The experts are the strategic parts of defensive
objects such as command centers, filter centers, etc. The stu-
dents need tools that help them quickly and accurately "see"
what the experts are doing. Tools that help the students
observe SWIRL in action facilitate learning by example.

• Querying SWIRL about how it solved a problem. Watching the
experts solve a problem becomes a much more powerful learn-
ing tool if the students can "get inside the experts' heads" and
see how they reasoned to an overt decision and what knowledge
they used. To facilitate this activity, the students need tools
that help them rapidly isolate the relevant pieces of the experts'
knowledge. These tools promote learning by being told.

• Solving problems using implicit knowledge. Just looking at the
expert's knowledge won't help the students understand how to
apply the knowledge well. They must practice on problems of
their own and observe the outcomes. This requires tools that
permit the students to interface effectively with SWIRL as they
jointly solve problems. For example, at the simplest level the
students should be able to play the decisionmaking role of one
or more of the SWIRL objects while the other experts remain
automated. Tutorial facilities that assist the student in this
activity promote learning by doing.

• Solving problems using explicit knowledge. Students who just
learn to play the role of the strategic decisionmakers well have
developed good tacit or implicit knowledge of the domain, but
learning can be more effective if the students can externalize
their knowledge, in some symbolic formalism. By externalizing

their knowledge, the students simplify the processes of examin-
ing, reasoning about, and improving their skills. In the context
of learning military strategies, the students must be provided
with tools that enable them to construct and test their own ver-
sions of SWIRL behaviors that make strategic decisions. More-
over, these tools must enable even nonprogramming students to
write behaviors.

• Incrementally refining knowledge. In learning through practice,
most learning is incremental knowledge refinement. The stu-
dents attempt to solve a sequence of problems that "stress"
their formative knowledge. To learn from this experience the
students then receive feedback about the consequences of their
decisions and attempt to detect the decisions that caused the
unacceptable results and the faulty knowledge underlying those
decisions. Next, they should create new versions of the
decisionmaking behaviors that try to fix the bugs in the existing
version. They then must test these new hypotheses, repeating
the process until they are satisfied with the performance of
their knowledge (relative to the experts). To support these
activities, in the context of learning military strategies, the stu-
dents must be provided with rich graphical simulation output to
help pinpoint particular strategic decisions that are suspect.
They also need tools for creating and maintaining versions of
strategic behaviors and for "going backwards" in a simulation to
key decisionmaking points where they can try out revised ver-
sions of behaviors.

We view this as a guided experimental learning environment. Like
scientists, the students are generating hypotheses (various competing
versions of the knowledge or behavior that makes strategic decisions),
then testing the competing hypotheses against one another (by observ-
ing their consequences in the simulated SWIRL battlefield). This test-
ing not only provides data by which to rank the hypotheses but may
also suggest new hypotheses to test. Knowledge acquisition in many
areas, not just military strategy, has this empirical generate-and-test
character. More generally, any design activity (whether or not the
artifact being designed is one's own knowledge) involves generate-and-
test. Viewed one way, our environment is simply a set of tools aimed
at supporting these common processes.

IV. CHANGES REQUIRED IN SWIRL AND ROSS

In developing our automated learning environment, we expected to
use SWIRL in several ways. We also knew we would have to add many
of the incremental knowledge refinement tools and explanation tools
we required for learning, but which were not needed when SWIRL was
used just for simulation. However, we did not expect to have to change
SWIRL; thus it came as a significant surprise when we discovered that
not only did we have to modify SWIRL for tutoring, but that the
changes we needed to make were to the semantic foundations of the
ROSS object-oriented simulation language.

In this section we describe the role of SWIRL and ROSS in contri-
buting to the tutorial environment we developed. We begin with a dis-
cussion of the aspects of ROSS and SWIRL that we used without
change. Then we focus on the changes we needed to make to ROSS
and SWIRL to make them more suitable for tutoring. It is interesting
to note that this is not the first time tutoring has provided a "forcing
function" causing a significant restructuring of a pre-existent expert
system. Clancey (1982), for example, found that MYCIN, an expert
system for medical diagnosis, had to be rewritten to provide an
improved basis for teaching students medical diagnosis skills. We
regard the changes we made to ROSS and SWIRL as a significant
result of this research. We believe they are not merely useful for tutor-
ing but should serve as a foundation for the development of improved,
semantically more well-founded, object-oriented languages for simula-
tion.

WHAT SWIRL AND ROSS ALREADY PROVIDE

SWIRL already provides some of the tools we need to support learn-
ing through practice. First, as a simulator it provides a virtual world in
which knowledge can be exercised and decisions made, rapidly and
without any real, possibly dangerous, consequences. Second, the exist-
ing SWIRL graphics, although not ideal, allow the user to obtain rela-
tively rich descriptions of the consequences of the user's decisions,
which can be used as a basis for diagnosing specific weaknesses in the
user's decisionmaking. Third, because SWIRL is written in ROSS, its
code is more modular than in other simulators. Each of the different
real-world objects that possesses distinct decisionmaking skills is
represented as a separate ROSS object; and the pieces of knowledge

each uses to make different strategic decisions are in separate ROSS
behaviors. The modularity of ROSS code has many benefits. For pur-
poses of learning, the most important benefit is that the student will
find it easy to make local coherent modifications to SWIRL's decision-
making expertise.

CHANGES IN THE ORGANIZATION OF KNOWLEDGE
IN SWIRL

SWIRL's representations of knowledge, while modular, do not
reflect semantic distinctions that are critical for purposes of learning.
Syntactically, all the parameters associated with objects are indistin-
guishable, as are all their behaviors. However, the various object
parameters and behaviors actually represent significantly different pro-
perties, knowledge, and abilities of military actors. The behaviors in
SWIRL not only include those that encode defensive decisionmaking
expertise for achieving goals or responding to situations but also those
that represent expertise of the opponent, those that enforce physical
laws (e.g., the "behavior" of gravity), those that implement nonmilitary
actions or skills (e.g., the ability to determine the Euclidian distance
between two points on a plane), and those that implement military
actions or skills not requiring any strategic knowledge (e.g., the ability
of a fighter to return to base). In addition there are several SWIRL
behaviors that are pure artifact: They are required to make the simu-
lation run but have no interpretation in terms of any real-world object
or behavior.

The parameters associated with SWIRL objects have a similar diver-
sity. In addition to those that might come under strategic decision-
making control (e.g, the length of time a fighter should loiter before
returning to base), there are parameters that must remain fixed
because they reflect physical laws, or because they represent current
technological limits, or because they are under control of the offensive
decisionmakers alone.

For purposes of learning, the behaviors that embed strategic
decisionmaking knowledge in the SWIRL experts must be accessible to
the students, and the students must be able to modify them, in order to
create versions for those behaviors, embedding their own formative
knowledge of how to respond to the situation described in the
behavior's message or how to achieve the goal implied by the message.
The students will need to "plug in" their versions in order to test their
hypotheses and observe the consequences of their decisionmaking rules.
Similarly, they will need to be able to modify the object parameters

10

(e.g., location) which are under their (defensive) strategic control, to be
able to implement a full range of decisionmaking alternatives. Each
alternative version of a piece of strategic knowledge defines a point in
the strategy space, which the students must explore to learn military
decisionmaking.

By contrast certain parameters and behaviors must remain absolu-
tely invariant; the students must not be allowed to change them, or,
possibly, even access them. Artifactual behaviors should remain invisi-
ble, and those that encode physical laws should not be subject to
change. Even some behaviors for defensive objects should stay fixed;
for example, those that encode technological limitations (e.g., the max-
imum speed of a fighter) or those that say how nonmilitary goals
should be accomplished (e.g., how any object would move from one
location to another).

Not all behaviors and parameters that may vary are strategic. In a
powerful learning environment, in addition to creating new versions of
behaviors, the students must test these hypotheses on a diverse set of
problems. Good strategic knowledge is robust: It must produce accept-
able or optimal (defensive) consequences over a wide range of initial
configurations and offensive strategies. Thus, those behaviors and
parameters that can vary, but are not under the control of the defen-
sive strategists (e.g., the flight plans and possible behaviors of penetra-
tors), must not remain fixed but should be systematically varied, either
by the students or some tutorial component, to generate military prob-
lems that are critical tests for the students' formative knowledge. Each
alternative initial configuration of the world and offensive strategy
defines a point in the problem space, which must be covered by the stu-
dents' strategic hypotheses, to ensure their robustness.

While both strategic and problem parameters and behaviors must
vary, the way they are changed must be quite different. The students
should be free to examine any point in the strategy space they wish;
they are trying to find a best point. However, the students should not
be free to control the selection of problems from the problem space in
the same way. For example, they should not be allowed to consider
only problems on which their strategies "look good." Quite the con-
trary, selection of points from the problem space should be done by an
"adversary" who is trying to bring out all the weakest points in the stu-
dents' formative knowledge. An analogy with program debugging may
be helpful. Here the goal is to design a version of a function that
works for all possible inputs. The problem space is the set of all possi-
ble test cases for the function. The strategy (or in this case function)
space is the set of all possible designs for the function, most of which
are wrong or nonoptimal. The feedback the programmer gets is the

11

answer the current function-version gives when applied to a particular
problem or set of inputs. To make sure his or her final version of a
function is robust, a good programmer always makes sure that it works
properly for special or extreme cases in the problem domain (e.g., 0,
NIL, etc.), not just simple cases.

In summary, the main conceptual changes we have made to the ori-
ginal SWIRL involve differentiating several different types of
knowledge that were originally confounded in SWIRL. When only the
visible performance of a system is of interest, as is usually the case
with simulations, the fidelity of its structure to the knowledge it
models is unimportant. However, if the system is to be used for learn-
ing, or any other purpose where the knowledge, not merely the behavior,
of the system is to be inspected, then it is critical that the system
represent an epistemic model of the real world, as well as a behavioral
one.

Reclassification of SWIRL Behaviors

In this section we present our reclassification of the 153 SWIRL
behaviors. Our basic strategy was to sort each behavior and parameter
according to its "semantic" type and then to reimplement them to
reflect this semantic analysis. The first distinction we drew was among
behaviors that were artifacts, mundane, and strategic. Artifactual
behaviors, which constituted a full one-third of the SWIRL code, are
procedures needed for bookkeeping or clerical purposes, but
corresponding to no action or computation performed by the modeled
military objects. For example, [moving-object (check interaction of
route from >position to >place with >radar)]J is a behavior that must
be executed so that objects that move relative to others will be sent
information when other objects come into their range. Of course, in
the real world, proximity detection does not require such monitoring.
However, proximity detection and other natural physical phenomena,
such as the effect of gravity, cannot be modeled computationally
without these artifactual behaviors.

In the existing SWIRL, many artifactual behaviors were segregated
by creating wholly artifactual objects; objects having no correspondent
in the real world. The main such objects in SWIRL were the physicist
(whose behaviors simulated physical phenomena such as gravity), the
mathematician (who did complex mathematical computations), and the
scheduler (who took care of various interobject effects). The creation

'In this report, behaviors of objects will be designated by the following syntax:
[<object name> (<behavior pattern>)].

12

of these objects was an attempt to hide artifactual behaviors. In reor-
ganizing SWIRL, we chose a different strategy to hide them. We reas-
sociated the artifactual behaviors with the objects that performed them
but defined them explicitly to be artifactual. While ROSS uses a single
form to define all behaviors, (ask <object> when receiving <message>
<behavior specification:^, we now use several different behavior-
definition forms, depending on the behavior's semantic type. For
example:

(defaux (moving-object (xheck-interaction position place radar))
<code>)

is the way to define an artifactual or "auxiliary" behavior for the
above-mentioned SWIRL behavior. By using "defaux" we communi-
cate to the tutor that the behavior being defined is of no interest to the
student and should never be mentioned during learning.

In classifying the remaining SWIRL behaviors, we discovered that
while many contained important strategic knowledge, which we wanted
to feature during tutoring, others encoded basic skills that were
required by the objects to perform intelligently but that did not encode
expert military knowledge. For example [moving-object (new position
after traveling from >position at >velocity for >time)] is a basic
mathematical skill that any moving object, not just a military one,
needs in order to estimate its future position, given its current state.
We declare a behavior to be such a basic skill using "defbasic"; for
example,

(defbasic (moving-object (:new-position-after position velocity time))
<code>)

would be the way to state that the above ability to project future loca-
tions is a basic computational skill. When a behavior is declared as a
basic skill, the tutor knows that the student is permitted to observe the
behavior but is not permitted to change or experiment with the
behavior. Basic behaviors can be further classified into two subgroups:
those that achieve computational goals, such as the skill above, and
those that perform actions to achieve a goal, for example, [missile
(chase >object to >position)].

Finally, the remaining SWIRL behaviors each encode at least some
important expert knowledge about military strategy. Those behaviors
associated with defensive objects contribute to the definition of the
strategy space. It is these behaviors that the student can change and
experiment with to learn about military strategy. Behaviors that are
associated with offensive objects (the penetrator) help define the

13

problem space. Like basic behaviors, true strategic behaviors also
divide into those that accomplish computational goals (e.g.,
[command-center (determine which of >bases is nearest >penetrator)])
and those that perform real actions (e.g., [fighter (engage >penetra-
tor)]). In addition, it is possible for behaviors to have both an artifac-
tual component and a strategic or basic one. For example:

(defbehavior (radar (:out-range penetrator))
"Sent by the environment when a penetrator exits a radar's coverage area.

Only received if the radar is active, not saturated, and not ecmed by the
penetrator. First the radar stops tracking the penetrator, then it notifies
its filter center that the penetrator is out of range. Finally it tries to
find new radars to guide each of the fighters it is currently guiding."

(when (send self ^tracking penetrator)
(--> self ':stop-tracking penetrator)
(==> (send self ':filter-center) 'filter-center ':out-range self penetrator)
(dolist (fighter (send self ':fighters-guided))

(—> self ':try-to-change-guider fighter penetrator))))

;;; When a penetrator moves out of radar range several clean up details are
;;; necessary. First, if the penetrator was not seen by the radar (ecm, or
;;; saturation), the penetrator must be removed from certain lists. Second, if
;;; the penetrator was being tracked, then the radar may no longer be saturated,
;;; so possibly send a new in range message. This is done by foo.
(defaux (radar (:out-range penetrator))

(cond ((memq penetrator (send self ':ecm-list))
(send self ':remove-from-ecm-list penetrator))
((memq penetrator (send foo ':saturation-list self))
(send foo ':remove-from-saturation-list penetrator))

(t
(send self ':unsaturated))))

As the above behaviors illustrate, there is often a significant
"cleanup" accompanying a "real" action. By permitting auxiliary
methods to be associated with true behaviors, we provide a way of
organizing artifactual information, without confounding it with real
knowledge and strategy.

Several points become apparent on examination of these messages.
First, there is no discrete separation of these behaviors and the previ-
ous domain-independent behaviors for accomplishing goals. Some of
the behaviors grouped here are only weakly specific to the military
domain (e.g., [penetrator (make a turn >n degrees >direction)]), while
others are much more specialized (e.g., [fighter (return to base)]).
Similarly, the behaviors grade from those that encode expertise about
how to achieve quite mundane military goals to those whose

14

achievement might be sufficiently complex to actually include some
strategic decisionmaking knowledge.

We applied an operational criterion to determine which command
behaviors we would consider as mundane and those we would consider
strategic. If it was possible to consider more than one way to accom-
plish the goal (even though SWIRL embeds only one alternative) in a
behavior's message, we classified the behavior as strategic. It is pre-
cisely the action goals for which you can perceive alternate solution
means that must embed important strategic knowledge, attempting to
justify the selected alternative. Goals that appear to have only one
acceptable means of solution, on the other hand, need not contain any
important decisionmaking knowledge. Alternative actions, and stra-
tegic knowledge for selecting one of the actions, go hand in hand.

Reclassification of SWIRL Parameters

The 102 parameters of generic SWIRL objects, like their behaviors,
have subtly different meanings not distinguished in the original simula-
tion. As with behaviors, these differences in semantics parallel differ-
ences in how the parameters may change and can be manipulated in
learning. Some must be respected as constants that cannot be changed
across simulation runs, others are variables that may take on different
values for different simulations, and still others will take on many
values in a single simulation. Thus, they should be divided into several
classes for purposes of constructing an effective learning environment.

Like behaviors, many object parameters are purely artifactual. They
do not represent a real property or state of a military object, rather,
they usually are used for simulation bookkeeping. For example,
[moving-object (time 0.0)]2 is a parameter kept by all moving objects to
remember when they last updated their position. But such "updating"
is never really done by objects as they move.

The remaining SWIRL parameters are real, but fall into several dif-
ferent classes. First, many parameters encode technological limitations
on the current capabilities of existing military hardware (e.g., [fighter
(max-speed 710.0)]). Whether these should be regarded as parameters
under control of the learner depends on how you define the learning
task. If you want to use SWIRL to learn what the effect of a faster
fighter might be (or a radar with a bigger range, etc.), you might desig-
nate some of these parameters as variables, not constants. We
regarded technological limitations as unchangeable, hence these

2In this report, parameters of objects will be designated by the following syntax:
[<object name> {<parameter name>)].

15

parameters will be considered as constant, though this would be easy to
change.

A similar set of parameters describe properties of objects that are
usually equally constant, but not because of technical limits, but
because of historical constraints. For example, the location of a filter
center is fixed once it is built. Determining which objects are immobile
enough to have constant positions is not simple. For example, we
assume, somewhat arbitrarily, that SAM sites are mobile; hence their
property parameter is variable and subject to strategic control.

Strategic parameters represent those properties of defensive objects
that are both variable and under the control of strategic decisionmak-
ing. These are the only parameters that the students are permitted to
manipulate. They thus help define the strategy space they are explor-
ing. Most of the strategic parameters encode decisions about how to
configure the command and communication network for the defense by
specifying which objects are permitted to send information to which
others. For example, [command-center (fighter-bases)] stores a list of
fighter bases controlled by a given command center. Other strategic
parameters encode strategic policies that may be subject to change; for
example, [fighter-base (alert-duration 1000)] determines how long a
fighter-base remains alert, after being sent an alert message by its com-
mand center.

Again, deciding which parameters should be strategic is not straight-
forward. We have adopted the general assumption that the defensive
communications network is subject to some variability and that stra-
tegic decisionmaking knowledge may be used to define specific net-
works within this limited range of variability. Thus, for example, even
though the location of a filter center will be regarded as fixed across
SWIRL simulations, the particular command center associated with it
may change between simulations, reflecting alternative command
hierarchies.

There is one final set of defensive parameters, which, like strategic
parameters, may vary. We refer to these as dependent parameters, as
they typically refer to aspects of the current state of an object (e.g.,
[fighter (position nil)]), which are changing in time as a side-effect of
some behavior (e.g., the fighter is attempting to intercept a penetrator).
While such parameters change in value, within a given simulation as
well as between simulations, they are obviously not under strategic
control.

Examination of SWIRL's dependent parameters uncovered a whole
class of strategic parameters that SWIRL did not make explicit. The
[sam (missiles 6)], for example, parameter is really used for two dis-
tinct purposes in SWIRL: to set an initial default number of missiles

16

for any SAM site and to remember how many missiles a particular
SAM site has left. There is a clear distinction between these two
notions, since the initial number of missiles a SAM has could easily be
varied strategically, while the number of missiles remaining is a depen-
dent parameter. The modified SWIRL we use for our learning
environment has separate parameters for both semantic roles.

To record the different semantic role of each of the SWIRL parame-
ters, we require that a descriptive keyword accompany the declaration
of each object parameter declared when the object was created. Each
parameter must be declared to be of type artifact, technological, histor-
ical, dependent, or strategic. To illustrate, we present the full defini-
tion of the object "fighter":

(defclass fighter (moving-object simulation-object graphic-object)
((max-speed 710)
(position nil

(:type dependent))
(range 10

(:type technological
xonstraint (lambda (x) (fixp x))))

(win-probability 0.0
(:type technological
xonstraint (lambda (x) (and (floatp x) (<= x 1.0)))
:documentation "Probability that a fighter beats a penetrator in an

engagement."))
(lose-probability 1.0

(:type dependent
initially (lambda (obj) (- 1.0 (send obj ':win-probability)))
:documentation "Probability that a penetrator beats a fighter in an

engagement."))
(guide-time 40

(:type technological
xonstraint (lambda (x) (fixp x))
rdocumentation "Time it takes a fighter to get a guidance request to

its radar."))
(initial-amount-of-fuel 6000

(:type technological
xonstraint (lambda (x) (fixp x))
:documentation "Amount of fuel a fighter starts off with."))

(mpg 0.55
(:type technological
xonstraint (lambda (x) (fixp x))
:documentation "How fast a fighter uses its fuel."))

(base nil
(:type historic
xonstraint (lambda (x) (typep x 'fighter-base))

17

:documentation "The unique fighter base associated with a fighter."))
(initial-number-of-missiles 6

(:type resource
xonstraint (lambda (x) (fixp x))
:documentation "The number of missiles a fighter begins with."))

(fuel nil
(:type dependent
:initially (lambda (obj) (send obj ':initial-amount-of-fuel))
:documentation "The amount of fuel a fighter has remaining."))

(missiles nil
(:type dependent
initially (lambda (obj) (send obj ':initial-number-of-missiles))
:documentation "The number of missiles the fighter currently has."))

(penetrators-pursued nil
(:type dependent
:documentation "The list of penetrators the fighter is pursuing."))

(gci nil
(:type dependent
documentation "The gci guiding the fighter."))

(status nil)
(print-char "J")))

CHANGES IN THE SIMULATION PRIMITIVES OF ROSS

While our first set of changes to ROSS suggest a reorganization of
the semantics of objects' behaviors, the second set of changes imply
even more profound conceptual alterations to the ROSS object-oriented
language, as applied to simulations. Object-oriented languages are
thought to be a natural formalism for expressing simulations because
computational message transmissions have a natural interpretation in
terms of real-world message transmissions. For example, a seemingly
reasonable way to model a transmission of a message from a gci to its
filter center, concerning an approaching penetrator, might be to say
(send filter-center1':in-range penetrator3). The exact meaning of this
message depends on the semantics of "send." In simulations, "send"
has the following intuitive semantics:

(send <object> <message>) The message <message> is
given to <object> at the current simulation time, t, <object>
does arbitrary computation (in response to the message), then
returns a value, at time t. Then the sending object resumes
computation, in possession of the return value, still at simula-
tion time t.

18

In other words, "send" has the semantics of a standard lisp function
call.

This semantics for "send" forces an interpretation of (send filter-
center! ':in-range penetrator3), which is suspect in several respects.
First, the computational message transmission requires no simulation
time, hence we must interpret the modeled physical message transmis-
sion as requiring no real time. This may be inappropriate, since we
may want our physical transmissions to have arbitrary costs in terms
of time. To model this we need a computational primitive that can
make mention of changing simulation time. Second, when a computa-
tional message is sent by an object, it must wait for a return value,
then proceed. However, objects sending physical messages merely send
them, and may wait for nothing. If the object to which the message is
sent wishes to reply, the original object may acquire information, but
this is clearly distinct from waiting for a function call to return. For
example, the sending object may do arbitrary computations while wait-
ing for a reply.

The Semantics of Physical Message Transmissions

Since "send" may be inadequate to model physical message
transmissions, letting it retain its traditional semantics, we defined a
new simulation primitive with the semantics we want for sending real
messages. The primitive "**>" has the following semantic interpreta-
tion:

(**> <object> <message name> <time> . <args>) = The
message <message name> with arguments <args> arrives at
<object> at t, where t is the current simulation time +
<time>. The sending object (self) is free to do arbitrary com-
putations between the current simulation time and t.

The time involved in such messages is usually dictated by a technologi-
cal parameter of an object that dictates how long communications take.
Adopting the convention that such times are accessed by the form
(send self ':communication-time) permits us to define a derivative
simulation operator:

(==> <object> <message name> . <args>) -
(**> <object> <message name> (send self ':communication-time) . <args>)

We typically use "==>" in preference to "**>" since it produces
cleaner and more readable code.

19

Below we list the behavior radars execute when they learn that a
hostile penetrator is in their radar range:

(defbehavior (radar (:in-range penetrator))
"When a radar first sees a penetrator enter its range, it begins
tracking it, notifies its filter center, and notifies its fighter-
base. Transmissions with these other objects requires a fixed
communication-time."
(send self ':start-tracking penetrator)
(==> (send self ':filter-center) ':in-range)
(==> (send self ':fighter-base) ':activate))

Unlike the original SWIRL version of this behavior, our version exe-
cutes according to the natural interpretation. Simultaneous message
transmissions (with respect to simulation time) are sent to the filter
center and fighter base. Also at the same time, the radar will begin
tracking the penetrator. However, as desired, the (modeled) physical
message transmissions will not reach the (modeled) objects for a speci-
fied amount of (modeled) time.

Semantics of Actions and Mental Message Transmissions

The above behavior still has a semantic anomoly, unfortunately.
The form (send self ':start-tracking penetrator) will cause tracking to
begin immediately. However, while initiating tracking is not an exter-
nal message transmission that requires time to arrive, it can be
regarded as an internal computation that may require time to execute.
Using "send" implies it is a timeless action. Thus, in addition to "**>"
and "==>", we introduce another new simulation primitive, "—>".
"~~>" is intended to model the execution of actions that take time to
accomplish, in contrast to "**>", which models actions (communica-
tions between objects) that, for the sender, are essentially instantane-
ous actions but take time to arrive at the receiver. The actions to
which we refer may include any activity of an object that requires time,
either "mental" actions (e.g., [fighter (determine which of >fighters is
nearest >penetrator)]) or "physical" ones (e.g., [fighter (scramble some
fighters guided by >gci to penetrator)]). The precise semantics of

(~~> <object> <message name> <time> . <args>) = The
message <message> and its arguments <args> arrive at
<object> at simulation time t, where t is <time> + the current
simulation time. The sending object (self) is blocked from any
other computation until t.

20

Assuming <object> is self (since —> is used to model internal
actions, and **> is used for external message transmissions), the main
difference between ~~> and **> is that after **>, the sending object,
self, is free to perform other computations, while "~~>" blocks self
from doing anything else. Internal actions must be done serially.

The time involved in such messages is usually dictated by a techno-
logical parameter of an object that dictates how long certain kinds of
activities take to accomplish. Adopting the convention that such times
are accessed by the form (send self ':<action>-required-time) permits
us to define a derivative simulation operator:

(—> <object> <message name> . <args>) = (—> <object>
<message name> (send self ':<message-name>-required-time) .
<args>)

We generally use "-->" in preference to "—>" because it produces
cleaner, more readable code. Here is an example of "—>" in use:

(defbehavior (sam (:fire-at penetrator))
"To fire at a penetrator, if a sam is already alert it begins
shooting at once. Otherwise, it must first prepare for the penetrator,
then begin shooting."
(if (memq penetrator (send self ':expected-penetrators))

then
(--> self ':shoot-missiles penetrator)
else
(—> self ':prepare-for penetrator)
(—> self ':shoot-missiles penetrator)))

In this behavior, we model major internal message transmissions that
require time (:prepare-for, and :shoot-missiles) in terms of — >, which
permits such delays. Note simple internal accesses (e.g., :expected-
penetrators) are still modeled using send implying a 0 time require-
ment. If we had used "==>" instead, both transmissions in the "else"
clause being executed simultaneously, yet, clearly, preparation must
precede shooting.

In rewriting SWIRL, most uses of "send" were replaced by one of
the new simulation primitives described above. They result in code
that is much clearer in its semantic intent and relatively devoid of the
ad hoc and opaque techniques that the original ROSS used to delay
message transmissions, simulating actions that require time. We
recommend use of the primitives in the development of any future
object-oriented simulation language that is built on ROSS.

V. LEARNING AND TUTORING TOOLS

Having completed a discussion of how SWIRL and ROSS needed to
be modified to support learning, we turn now to a discussion of the
facilities we have added to ROSS and SWIRL. The learning that these
tools support, at the most general level, can be considered as a
generate-and-test cycle. The cycle divides into: (i) deciding what stra-
tegic idea the student wants to examine or test, (ii) establishing what
the military problem or scenario will be, (iii) producing the basic
results using ROSS, and (iv) analyzing the results to determine inade-
quacies of current beliefs and to provide a basis for improving them.
Below, we discuss each of these activities and mention the kinds of
tools our learning environment offers to support them.

TOOLS TO HELP ESTABLISH A STRATEGIC IDEA
TO TEST

To generate a testable strategy, the students must select values for
all strategic (defensive) parameters and must define all strategic
behaviors. Then, they must combine the strategy with the constant
defensive behaviors and parameters (the behaviors embedding artifac-
tual, nonmilitary, or basic military knowledge, and the parameters
encoding artifactual, technological, and historic properties). In this
way, they form a complete defensive configuration, which specifies all
defensive instance objects required for an executable simulation.

Of course, it would take a prohibitively long time for the students to
construct such configurations from scratch, even assuming that all
parameters and behaviors that are nonstrategic are "inherited" and do
not ever need to be mentioned by the students. Fortunately, there is
no reason the students should have to construct configurations from
scratch. They are usually interested only in testing out an idea that
involves changing one or two parameters or behaviors in the whole
configuration. Every other parameter and behavior can stay as it was.

The Strategy Net

We facilitate this incremental exploration of strategies by enabling
the students to create whole new defensive configurations by editing
previous ones, creating alternative versions. All defensive configuration
versions are maintained in a strategy net. Each node in the net

21

22

represents a complete defensive configuration, and an arc represents a
successor relationship between two configurations. A node may have
several successors, each representing a distinct variation on its prede-
cessor. Strategy nodes and the strategy nets for encoding versions of
behaviors and parameters bear an interesting relationship to contexts
and layers, used to represent design alternatives in the PIE program-
ming environment (Goldstein and Bobrow, 1980).

Although each node specifies a complete defensive configuration—a
value for all strategic parameters and behaviors—it does not actually
store all this information. We need only to store the changes from its
predecessor explicitly. When the configuration is actually used, we
simply inherit all behaviors as needed, searching all the way back to
the "root" configuration to find the nonstrategic parameters and
behaviors, which need to be stored only once, for use by all strategic
nodes. Thus while a complete defensive configuration includes a large
amount of information, remembering a full configuration requires
surprisingly little storage.

To create a new defensive configuration the students simply say
(create-strategy <predecessor strategy> <new strategy>) and then
begin to edit the new strategy, which is now linked into the strategy
net. The nature of the editing differs, depending on whether the stu-
dents want to make a change in strategic parameters or behaviors.
Changing behaviors requires some programming on the part of stu-
dents, but the students need little experience as Lisp or ROSS pro-
grammers, because we have replaced the notion of programming with
that of making small, simple, and highly constrained modifications to
parameter values and stylized, English-like, code. At most, the stu-
dents need to write a few lines of ROSS. Even this effort may not be
necessary to create new versions. The students are encouraged to
"graft" from one version to another. In particular, they can take
behavior definitions in one strategy and create a variant of another
strategy that uses this definition but retains all other characteristics of
the second strategy.

To illustrate these techniques for creating and editing defensive con-
figurations, below we show an example of a student creating two new
defensive configurations to test out a couple of strategic ideas. (Student
responses are in bold, system output in standard font, and comments
are indented in italics).

(create-strategy Fighter-loiter-strategy Vanilla-strategy)
Fighter-loiter-strategy

First the student establishes the new strategy. It
is spawned from "Vanilla-strategy", the default

23

strategy provided initially by the tutoring environ-
ment.

(print-strategy-behavior Fighter-loiter-strategy (fighter :engage penetrator))
(defbehavior (fighter (:engage penetrator))

"Sent by the fighter to itself. The fighter first uses its radar to confirm the
presence of the penetrator. If present, it informs its radar, then engages the
penetrator in an endgame skirmish. If it is not there it simply returns to base.'
(cond ((--> self ':is-in-range penetrator self)

(==> (send self ':gci) 'gci ':sited self penetrator)
(--> self ':endgame penetrator))

(t (--> self ':return-to-base))))
The student sees that at present if a fighter
doesn't see a penetrator when it expects to it
immediately returns to base.

(defbehavior (fighter Oengage penetrator))
"Sent by the fighter to itself. The fighter first uses its radar to confirm the

presence of the penetrator. If present, it informs its radar, then engages the
penetrator in an endgame skirmish. If it is not there the fighter waits around
for 10 minutes before it returns to base."
(cond ((--> self ':is-in-range penetrator self)

(==> (send self ':gci) 'gci :sited self penetrator)
(--> self :endgame penetrator))

(t (--> self loiter-for 10)
(--> self ':return-to-base))))

[Fighter-loiter-strategy (fighter :engage)]
Now the student changes the behavior so that the
fighter waits in place for ten minutes before
returning to base, assuming the loiter behavior
already exists. Note that the call to "defbehavior"
isn't global; it modifies the behavior relative to the
offensive configuration currently being defined.

<Student tests out the Fighter-loiter-strategy^

(create-strategy Loiter-and-change-bases-strategy Change-bases-strategy)
Loiter-and-change-bases-strategy

The student begins investigating another strategy
that is going to build on two previous ones. In a
strategy examined earlier, the Change-bases-
strategy, after engaging a penetrator, fighters
returned to the nearest base, not necessarily its
original one. Now the student wants to see the
behavior of a compound strategy that includes that
idea and the idea of fighters loitering.

(defbehavior (fighter (tengage penetrator))

24

{use Fighter-loiter-strategy})
[Loiter-and-change-bases-strategy (fighter :engage)]

To combine the Fighter-loiter-strategy into the
new strategy, all the user has to do is graft in the
relevant behavior. No new programming is
needed.

Graphical Definition of Strategic Parameters

Editing of strategic parameter values is even easier than editing
strategic behaviors. Instead of editing through programmatic changes,
the students edit through interactive modification of the graphical
display of the objects in the defensive configuration. Once a defensive
configuration has been created, it can be graphically examined by say-
ing (display-strategy <strategy name>). This will display an image like
that shown in Figure 2. Each of the objects in the configuration is
represented by an appropriately placed graphical icon. The icons can
be examined and modified several ways, and each change will be
reflected in actual changes to the program data structures associated
with the icon. Thus, the students program graphically.

Several types of changes are permitted, depending on which object
parameters are subject to strategic variation. First, mobile objects (i.e.,
objects whose position parameter is of type :strategic, not :historic) can
be moved by clicking on their icon with the mouse, "dragging" them to
another location, and then releasing the mouse button. Second, new
objects can be added to the configuration by selecting an object type
from a pop-up menu that will place a new object of the selected type at
the current location of the mouse. Figure 2 shows an example of a stu-
dent interactively creating an instance of a filter center in this fashion.
Finally, the command and communication network for the configura-
tion can be modified by changing the graphical connections among
icons. In Figure 3, the student has created and displayed a (partial)
communication network among the defensive objects. Connections are
created by drawing lines between the "communication ports" of pairs of
objects. For example, to connect a fighter base with a filter center, one
draws a line between the "FC port" of the fighter base, and the
"FBASES port" of the filter center. In Figure 3, the fighter base has
been connected to the filter center to the south of it. To change the
communication network so that the fighter base communicates with
the filter center to the north, the student merely has to connect the
"FC port" of the fighter base (to which the student is now pointing) to
the appropriate port of the new filter center.

25

riLTEfrCENTW
COMMAND-CENTER

FIGHTER-BASE
TARGET

(save-uindou Ssuirl-frane* *suindou4.bin*)Z

Live Uindou 3

Fig- 2—An example of interactive scenario creation. The student is
creating a new instance of a filter-center at the specified location.

26

(saue-uindou tsuirl-frane* 'sulndou5.bin*)■

Live Uindou 3

Click 1
is one
Click r
Done.

Fig. 3—An example of interactive modification of the communication
network. The student has displayed the current network and can
change it by mousing on the appropriate "communication ports"

of the objects.

27

Historical and Evaluative Information in Strategy Nodes

The techniques we have discussed for editing configurations make
the strategy net a powerful tool for exploring a wide variety of different
strategic ideas. However we also annotate strategy nodes with several
other pieces of information that make them even more valuable for
learning. The main slots associated with each node are:

• Wins. A list of offensive configurations and strategies that this
defensive configuration defeated, in the judgment of the stu-
dents.

• Loses. A list of offensive configurations and strategies that this
defensive configuration was defeated by, in the judgment of the
students.

• History. A time-ordered list of the offensive configurations and
strategies that were tested against this offensive configuration.

While rudimentary, these slots represent a first attempt at associat-
ing evaluative and historical information with strategy nodes that can
be useful in assisting the students in answering several important types
of questions. Using these slots (and perhaps more sophisticated vari-
ants of them) we are attempting to help the student answer questions
like: "What is the most recently tested hypothesis (strategy)?"
"Where did this hypothesis succeed?" "Where did it fail?" "Why did
it fail on this problem?" "What is the best hypothesis I have con-
sidered to date?" "What variations have I already considered on this
hypothesis?" "Have I ever tried this hypothesis before?" "Why didn't
I like it?" The role of these questions is not to do the learning for the
students; rather, the questions take care of bookkeeping for them and
reduce their cognitive load so they can concentrate solely on generating
effective new hypotheses and understanding why old ones failed. Like
most of the tools we propose, it is a learning aid, even though not an
active learning guide.

TOOLS TO HELP ESTABLISH A PROBLEM

After the students have established a strategy to test, by invoking an
existing one or creating a new one, the students next need to establish
a problem to test a particular strategic behavior or idea they have. The
goal is to learn about the effectiveness of the strategic idea by choosing
specific problems that stress it, making it show its important negative
and positive behavioral characteristics. Thus, picking problems at ran-
dom is not likely to teach them anything. In addition, they must have a

28

good overall plan for picking questions. They must pick a diverse set
of questions to test all aspects of their strategy, not just a redundant
set that all test the same aspect. The students must perform a kind of
sensitivity analysis to determine the robustness of their knowledge.
Speaking generally, the students need tools both to create problems
easily and to select problems intelligently.

The Problem Net and Graphical Definition of Offensive
Parameters

In establishing a problem, the students must stipulate all behaviors
and parameters of offensive objects (parameters) to establish a com-
plete offensive configuration. Collectively, the problem and the strategy
configurations compose an initial simulation state, which can be sub-
mitted to the ROSS simulator. The task of creating an offensive confi-
guration is simplified by the same considerations that eased the task of
creating a defensive configuration. First, the students do not need to
stipulate all offensive behaviors and parameters, only problem parame-
ters and offensive strategic behaviors must be defined. Second, to
define or modify offensive behaviors, we generalized the version editing
facility, described above, to work for penetrators, thus defining a prob-
lem net analogous to the strategy net. Similarly, we extended our
graphical facility for specifying defensive parameters to permit the
interactive stipulation of offensive parameters. The offensive parame-
ters subject to variation include, deciding how many penetrators will
attack, deciding their flight plans or the routes they will take, deciding
when they will begin flying, deciding what their targets will be, and
deciding their "payload."

Figure 4 shows how students can specify the position of incoming
penetrators and "draw" their flight plans on the screen. First the stu-
dents click a mouse button on the penetrator. This causes a pop-up
menu to be displayed. It is important to note that the items in the
menu are not the same for each type of object; rather they are com-
puted dynamically depending on the object type and its current state.
For example, since the object is a penetrator, one option is to make its
flight plan. The menu popped-up for a fighter base would not have
this option. Once the students have selected the "Make flight plan"
option, to define the route they merely lay down a series of points. As
with defensive parameters, these graphical actions are translated into
program data structures that are stored in the problem node currently
being defined.

We found that using the graphical interactive facility to define
offensive and defensive configurations, students could construct

29

g<PENETRATOR 13336107>
Describe instance

Display communication channels
Fike flight plan!

(ft

(save-uindou Ssuirl-franet *suindouS')|

Live Uindou 3

Click
lse to
Done.

Fig. 4—An example of interactive creation of penetrator flight
plans. The student can create a route by selecting the turning

points with a mouse.

30

problems or defenses at least 10 times faster than they could by pro-
gramming. One reason was that it was not only easier to construct the
objects graphically, but that problems created graphically were much
more likely to be just what the students wanted than those created pro-
grammatically. For example, programmatic specifications typically did
not locate objects in the desired locations the first time through. The
students often had to modify the specification, then show it graphically
several times, before it was as expected.

Historical and Evaluative Information in the Problem Net

Also as with strategy nodes, additional slots associated with each
problem node help annotate it and can greatly facilitate learning. The
slots we now support for this purpose include:

• Wins. A list of defensive configurations and strategies that this
offensive configuration defeated, in the judgment of the stu-
dents.

• Loses. A list of defensive configurations and strategies that this
offensive configuration was defeated by, in the judgment of the
students.

• History. A time-ordered list of the defensive configurations and
strategies that were tested against this defensive configuration.

These slots, and more sophisticated versions of them, we may con-
sider in the future are useful for answering such questions as: "What
is the most recently used problem?" "Where (which strategies) did this
problem beat?" "Which beat it?" "Why did it lose (or win)?"
"What is the toughest problem I have considered to date?" "Have I
ever posed this problem before?"

Simple Automated Problem Selection Aids

These facilities help the students create a variety of interesting
problems to test their strategic ideas, but they do not help ensure that
the problem the students establish is a good one; that is, one that will
stress their strategic idea. While choosing good problems is, in general,
a very difficult problem, we provide two aids that can help in this
regard. There are some simple rules that students should adhere to,
when testing a new strategy, to constrain the selection of problems.
First, the strategy should be monotonic improving: It should accom-
plish all the problems on which its immediate predecessors did well.
Second, it should pass the critical problems at which its predecessors
failed and were the reasons for its creation. We provide queries that

31

will retrieve problems that fall into both of these categories. Thus, if
the students say (find-recent-problems 10), the tutor will return the
names of the last 10 offensive configurations tested; and if they say
(find-killer-problems 5), it will return the last 5 problems that the stu-
dents placed in the Loses slot of any defensive configuration. In the
future, many more sophisticated queries of this type may be considered.
For example, it would not be hard to get the system to pose the most
difficult questions to the students (i.e., ones with the most strategies in
its Wins slot or to propose a diverse set (i.e., problems with nonover-
lapping sets of strategies in its Wins slot).

TOOLS TO GENERATE RESULTS

Once the students have defined a hypothesis and chosen a critical
test for it, the test must be applied to produce some data by which to
judge the value of the hypothesis. In the context of simulation, the
generation of basic results is straightforward. One simply submits the
initial simulation configuration to the simulator. The ROSS simulator
is analogous to a theorem prover; it mechanically produces results
given an initial set of premises. The inferences or results a simulator
produces are of a particular kind. They are time-indexed events, where
an event is any change of value of a dependent ROSS object parame-
ter.1 For example, a fighter's change of direction from S to SE results
in a change of several of its dependent variables (e.g., velocity) and
constitutes a basic event computed by the ROSS simulator. The stu-
dents may let the simulator continue computing results until some
natural termination state is reached (no dependent variable changes for
two successive time steps), or they may interrupt the simulator at any
point to obtain more information about the simulation path than the
simulator yields by default.

TOOLS TO UNDERSTAND THE RESULTS
OF A SIMULATION

From a learner's point of view, understanding a simulation does not
merely mean seeing what events happened, it involves a deeper
analysis of why they happened. The need to understand why overt
results happened is common to virtually all types of learning through
practice. Unfortunately, achieving such an understanding is often a

actually, some artifactual parameters are involved too, but they should never be of
interest to the students.

32

difficult task; hence, automated supports to aid in this activity are
highly desirable.

To understand why overt events occurred, the learner attempts to
reconstruct the causes of the events. In generating a simulation, the
students (with the assistance of the simulator) used their strategic
knowledge to make particular decisions, which gave rise to visible
results. In understanding the causes of the visible events, the students
try to reverse this flow. They must infer the decisions responsible for
the result and then attempt to determine the knowledge underlying the
decisions. This causal understanding, alone, serves as an appropriate
basis for incrementally modifying one's knowledge in an intelligent
way.

In SWIRL, graphical output provides an excellent display of all
overt events; however, we augment these graphic capabilities with
several tools to help analyze and remember their causes. These include
an extended break and snapshot facility, tools for browsing and viewing
objects and their behaviors, and a facility for remembering analyses
and experiments. We discuss each of these in turn.

An Extended Break and Snapshot Facility

As the students watch a particular simulation progress graphically,
they may see an event that was unexpected or interesting. We have
provided a "break package" that lets them understand these events
more completely. The break package is particularly useful because it
permits the students to interrupt the simulation as soon as the anomo-
lous event is detected. This is crucial because if the students have to
wait until the simulation terminates, they will probably forget where
they wanted to return to.

The students will usually try to stop the simulation at the point
where they first perceive overt events that influence their currently
tested strategy. However, examination of that simulation state may
convince them that the real events of interest happened in prior states.
It would therefore be highly desirable to allow the students to back up
the simulation to arbitrary states and allow them to apply the above
analytic tools there. To enable such backtracking, we maintain a com-
plete state history of the simulation. The state history records suffi-
cient information to regenerate the simulated world at any past simula-
tion time.

The history comprises a series of simulation snapshots—one for each
discrete time step in the simulation. A snapshot encodes all the
parameter values of all simulation objects. Fortunately, storing such
snapshots does not require as much space (and time) as one might

33

think. The simulation state at a given time is completely characterized
by just the dependent parameter values of objects that changed during
a given simulation time-step. All nondependent parameter values are
completely constant and so can be garnered from the initial simulation
state. All unchanged dependent parameter values can be inferred from
previous simulation snapshots.

While our snapshot facility is now operational, the backtracking
facility based on it is still under development. Fortunately, however,
the ability to retain simulation snapshots has proved useful in several
additional ways that we exploit, even now. Snapshots that are
critical—showing some undesirable consequences of a tested strategy—
may embed problems that the students should invoke again. Assume,
for example, that the students isolate a past state at which their
strategy made a questionable decision. If they then modify a behavior
to represent a new strategy, the obvious first test would be to ask:
"Will the new version produce better results at the point where the pre-
vious one failed? In such cases it is not cost effective to have to redo
the simulation from the initial state, on the initial problem. Rather, it
is better to define the new problem to be the offensive configuration at
its current state.

A Facility for Viewing Behaviors and Parameters

Once the students have isolated the message transmissions causing
an event, they may wish to view the associated behavior. We have
developed a powerful browsing facility that enables the students to
examine dynamically the objects that constitute a simulation, along
with their associated behaviors and parameters. The facility takes no
programming skill to learn and use. In Figure 5, the student is curious
as to how the penetrator evaded his or her defenses. The student
begins his analysis of the causes of this event by exposing the com-
munication network around the area of interest. The student then
proceeds to probe the state of the nearby objects, beginning with the
filter center. Each of the objects on the screen is mouse sensitive, and
one of the options associated with all objects is "Describe instance"
(see the menu in Figure 4). When the student selects this option for
the filter center of interest, a window pops up with a textual descrip-
tion of that instance. As Figure 5 shows, items in this window are
themselves mouse-sensitive and can be described in more detail. Here,
the student clicks on the attribute "COMPUTING-DELAY" and
receives documentation on the meaning of this attribute.

The fact that virtually all items in the environment are mouse-
sensitive permits the student to obtain arbitrarily deep descriptions of

34

HFILIEP-CQ1TER 14441645»

REPORTIMC-DELRV 7a

HLtMllNU-UELFW 68
conrmno-CEMTER KCONHflMD-CENTER 14445323 >
FIGHTER-BASES (ivFlCHTER-eflSe I444l?46>)
BW IUL
BCIS (K6CI 144*14«*)
PENCTRflTORS NIL
lHlfCS-IO-00 NIL
POSITION (2BB . 364)
ST MUS ACTIVE

FILTER-CENTER

r« « filter 6«nt«r t*xes to pr«o«r« to ctafand «satnat * pen

vtndoul *au1r?-fr*r

Ll»p Ll«t«ner 2

C'-le« l«ft an tr>* connun on sort you wtan to connect

Fig. 5—An example of the dynamic browser. The student is inspecting
the information associated with a specific filter-center.

objects and to tailor the information received easily to the student's
level of skill, interest, and current analytic goals. It is difficult to con-
vey the full power of this dynamic facility in static text, but Figure 6
hints at the analytic possibilities. Here, the student continues to
browse the knowledge associated with the filter center instance, hoping
to understand why the penetrator successfully evaded his or her
defenses. Having examined that particular filter center, the student
then proceeded to examine the parameters and rules associated with
the generic filter center (in the partially hidden window above the win-
dow describing the filter center instance). Next the student selected
one of the behavior names associated with the generic filter center, and
a large window popped up showing the code that a filter center

35

KFILIER-CEMER 1«4«L645>
tafalaai

FILtER-CEttlER
It* tmtanca vtr'itlu:

BePflBTIIlG-OELBV
IDCFneiHOE (FILIEH-CEfllER :IH-RflM5E) (PtnEIRRTOR)

(IF (—> 6ELF •iMOSTIU-PEMETRflrOR) (--> SELF liPEFVÜl-aCHTHsT ?EH6TRftt09 RADAR))

UM f I 1 t«r cintir

Fig. 6—A further example of the dynamic browser. The student has
now examined the knowledge associated with the generic filter-center,

including a specific behavior. Parts of the behavior are mouse-
sensitive and subject to further description and browsing.

executes when told that a penetrator has entered its radar range.
Again items in this window are mouse-sensitive and can be probed. In
this regard, the student has already requested a textual description of
the behavior, essential for novice programmers. The student is now
about to the select the item ":DEFEND-AGAINST". This will cause a
new window to pop up that shows the code associated with this
behavior. In this way, the student can easily trace the program logic,
examining initial behaviors, and, in turn, the behaviors called by them.

36

A Facility for Remembering Analyses

Having invested the time to learn why a simulation yielded certain
results, the students should be able to cache their understanding,
minimizing the chance that they will waste time exploring this part of
the space again in the future. An experiment history records all the
students experiments. Each experiment in the history is an association
between a strategy used, a problem it was tested on, and a set of
results. The results may be described in several ways: (i) lists of
specific simulation events the students judged to be good or bad, or,
possibly, a snapshot of the complete simulation state embedding those
states; (ii) an overall success or failing rating for the experiment; (iii)
arbitrary textual comments or annotations by the learner; and (iv) a
list of specific causes. The specific causes are pointers to the (stra-
tegic) behavior versions that the student discovered to be the causes of
the good/bad simulation events.

These various tools for understanding the results of a simulation, of
course, can be used by the students to see how the SWIRL strategic
experts solved various problems, as well as to see why their strategies
did or did not work. They are tools that help them understand their
own decisions better, but they also enable them to "get inside the
experts' heads."

VI. CONCLUSIONS

This report has discussed a tutoring or learning environment using a
modified version of an object-oriented simulation called SWIRL. In
this final section, we review what we believe are some of the main les-
sons we have drawn from this research.

IMPROVING OBJECT-ORIENTED SIMULATION
LANGUAGES

We have found that several fundamental changes needed to be made
both to SWIRL and the underlying ROSS language in order to produce
a simulation that could provide a solid foundation for exploration and
learning. The first set of changes involved a large-scale reclassification
of SWIRL behaviors and parameters. Now, instead of one category for
all behaviors, we have three: artifactual, basic, and true behaviors.
Similarly, instead of one class for all parameters, we have five: artifac-
tual, technological, historical, dependent, and strategic.

These classifications represent more than just a refinement of exist-
ing object-oriented programming concepts. The notion of a behavior or
object parameter carries with it no specific semantic intent, while our
finer classifications imply distinct meanings. Consequently, imposing
them on an object-oriented language would be a mistake. If the
language is not being used for specific simulation purposes, these clas-
sifications probably would not conform to a natural semantic decompo-
sition of the subject matter. However, if your intent is instead to
design a special purpose language for constructing a particular class of
simulations, then it would be reasonable to consider embedding our
constructs directly in the language.

We envision an environment in which users cannot define unspeci-
fied object types, behaviors, or parameters, but instead must build
specifications in terms of our specific kinds of behaviors and object
properties. Such a language would have benefits beyond ensuring that
the simulations constructed were semantically reasonable. For exam-
ple, one problem that plagues many current military simulations is the
issue of updating and graphical displays. Object parameters cannot be
changed continuously, even though the real-world property they
represent may be continuous. Thus, at a given simulation time, some
attributes may be out of date. This becomes an issue when the state of
the simulation is displayed (or observed in any way by the user). If the

37

38

graphical output routines simply display current object parameters
values, the image produced may be inaccurate. To solve this problem,
the users typically have to write their own special-case routines that
update all relevant parameters just prior to graphical display. Many
simulations written at RAND (e.g., Klahr et al., 1982; Klahr et al.,
1984) employ this technique.

A main problem with this solution is that a new updating routine
has to be written for every simulation, and it is thus not transparent to
the user. However, our classification of parameter types provides the
basis for a more elegant solution. Since not all object parameters need
to be updated prior to display, if the simulation itself knew which
parameters to update it could automatically take care of this task, and
the entire procedure could be hidden from the user. Indeed, automatic
updating for graphical updating could become a language feature.

The current refined categorization of object parameters facilitates
this automation. Of the five classes or parameters, only dependent
ones (e.g., position, fuel) might need updating before graphical display.
Technological and historical parameters remain constant across simu-
lations, strategic parameters stay constant within a simulation, and
artifactual ones may change but are, by definition, irrelevant to the
display. Thus, our categorization of object parameters provides just the
right basis for determining which parameters to access before graphical
updating. All that remains to automate updating completely is to tell
the system where to find procedures that compute updated values of
each dependent parameter. Such procedures are written by users
already. They do not have to write them just for updating purposes,
they merely declare their names to the simulation language.1

IMPROVED PRIMITIVES FOR OBJECT-ORIENTED
SIMULATION LANGUAGES

A second aspect of the current work that should influence the design
of future object-oriented programming languages involves the new
simulation primitives proposed in Section IV. In our work, the opera-
tors "==>" and "-->" were essentially imposed on an existing language,
not built into the language's foundations. Consequently, although we
expect these primitives will prove useful in improving the semantic
clarity of programs, we have no extensive data to substantiate this con-
jecture. We believe that "==>" and "-->" should be examined more

Recently, an automatic updating algorithm along these lines has been independently
implemented at RAND by S. Cammarata, B. Gates, and J. Rothenberg.

39

thoroughly in the context of a new object-oriented simulation language
that includes them as language primitives.

We are not suggesting that the usual language primitives for mes-
sage transmission (e.g., "send" in zetalisp, or "ask" or "tell" in ROSS)
be eliminated. All the primitives should be available to the program-
mer; however, each should be restricted to its appropriate role. To sum-
marize the roles suggested in Section IV, "send" (or its equivalents)
should be used to represent only those computations that are message
transmissions in a strictly metaphorical sense. Calls to "send" do not
properly represent any real-world activity that requires time to execute.
In effect, "send" should not be considered as a primitive for modeling
at all. For purposes of simulation, it has a semantics identical to that
of a simple function call.

If "send" is reduced to a function call, then all the burden of model-
ing shifts to "==>" and "->". In our research, "==>" was introduced
to model the interobject transmission of information across some com-
munication channel, and "-->" denoted any intraobject computation or
action. While these primitives have proved adequate for our purposes,
it is likely that alternate and better formulations can be discovered.

Viewed one way, we are not just constructing general programming
operators but stipulating primitives in a theory of action. Our simple
theory of action says that people are capable of mental actions, physi-
cal actions, and communication actions. Are there other basic kinds of
actions? Or, within our gross classifcations, should we make further
conceptual distinctions and reflect them in more refined language
primitives? We will not attempt to answer these questions here. Our
intent is simply to point out that much more sophisticated philosophi-
cal theories of action exist (e.g., Goldman, 1986) and that a promising
course of research might be to extend the work we have begun here by
consulting these sources.

DISTRIBUTED SIMULATION AND THE TIME WARP
MECHANISM

To conclude this section we mention a benefit of our new language
primitives that was unforseen when they were designed and that has
nothing directly to do with improving the fidelity of object-oriented
simulations. An attempt is being made at RAND (Burdorf and Marti,
1987) to implement a general scheme for distributing object-oriented
simulations among many processors, in order to speed up execution.
At the heart of this research is the Time Warp mechanism (Jefferson
and Sowizral, 1982). This research has discovered that object-oriented

40

simulations written in traditional languages, such as ROSS or Flavors
(Weintraub and Moon, 1982), will not run properly in a distributed
Time Warp environment. To execute correctly and efficiently in paral-
lel, simulations must be written in a way that clearly distinguishes true
message passing between simulation objects from "pseudo" message
transmissions, or instantaneous intraobject computations. It appears
that the primitives "==>" and "-->", when differentiated from "send",
provide just the right basis for simulations that conform to this con-
straint. Work needs to be done to confirm this conjecture.

PASSIVE EXPLORATORY TOOLS AND ACTIVE
TUTORING PROGRAMS

The system we have developed might be called a set of tools to aid
learning rather than an automated tutor. Our aids are tools in the
sense that they are facilities used by students when needed; they are
not imposed by an external agent. We prefer to think of the present
system as a bona fide tutoring environment but make the distinction
between passive tutors, of which this is an instance, and active tutors.

Whether a tutoring system is active or passive is more a matter of
degree than an absolute classification. Roughly, tutoring systems are
active to the extent that they control the tasks on which students
work, determine the pace of interaction, and offer unsolicited feedback
on student performance. Typical active tutors include most computer-
aided instruction (CAI) programs (Smith, 1981), as well as some intelli-
gent tutoring systems (e.g., Anderson 1984; Sleeman and Brown, 1982).
A step less active are systems like GUIDON (Clancey, 1979; Clancey,
1982), WEST (Burton and Brown, 1982), and the RAND algebra tutor
(McArthur, Stasz, Hotta, 1987). In contrast to active tutors, the dia-
logue in these systems is under mixed-initative control. For example,
in the RAND algebra tutor, the tutor controls the initiative by choos-
ing the next question for the students. On the other hand, the stu-
dents control the interaction within a question, requesting various sorts
of information when they want it, not when the tutor deems it neces-
sary.

In exploratory learning environments, virtually all the control
resides with the learner. Generally, exploratory environments provide
students with a "virtual world," in which models of entities can be con-
structed, tested, and modified. For example, STEAMER (Hollan and
Hutchins, 1982) presents the students with a world of components for
building simple hydraulic artifacts (e.g., a pump). The students' job is
to construct computer-models of working units and to use various

41

display facilities STEAMER provides to arrive at an understanding of
how they work. In SOPHIE (Brown, Burton, and de Kleer, 1982), the
students understand computer models of simple electronic circuits in
an exploratory "lab."

Not every computer-based virtual world is necessarily a good learn-
ing environment. Our work underscores several general features that
appear important in facilitating learning in exploratory environments.
To conclude, we discuss some important properties related to the capa-
city for model building that the environment should provide.

First, it must be easy for the learner to construct a wide range of
models to examine. In our tutoring environment, we permitted stu-
dents to create easily a large number of strategic models by combining
behaviors from different models into new ones. Of course, not all
models can be created by combining old ones. Until now, to generate a
full range of models, the students needed to use a general programming
language. However, programming may be a slow and error-prone
method of creating new models. One important area for future research
is to devise new methods for creating models that approach the gen-
erality of a programming language while maintaining the ease of the
simple combination strategy we have provided here.

Second, the models constructed must be inspectable. An inspectable
model is one that is semantically faithful (at some level of granularity)
to the real-world entity being modeled. They contrast with "black-
box" models (Brown, Burton, and de Kleer, 1982), so called because
only their gross input-output characteristics mirror the real world.
Inspectable models are crucial to learning and tutoring in many areas,
because they permit the students to examine model components and
understand the reasons for the model's overall behavior. Many impor-
tant learning and tutoring aids depend on inspectability. For example,
explanation facilities (e.g., Davis, 1978) for systems are effective only
to the extent that they can access detailed traces of the system's per-
formance that represent real-world processes. Viewed in this light, our
reorganization of object behaviors and parameters, as well as the use of
the "==>" and "-->" primitives, are an attempt to ensure the inspecta-
bility of models constructed using object-oriented languages.

Finally, the learners must have tools that help them control explora-
tion. Giving students the ability to construct a wide range of models to
test carries a potential cost: They may explore many uninteresting
parts of the large space of possible models. One of the attractions of
active tutors is that the tutor circumscribes wasteful student searches.
However, in the near future, we cannot envision intelligent tutors
clever enough to control search in areas as complex as military strategy
automatically. Consequently a major research goal should be to inves-
tigate ways to help the students effectively control search themselves.

42

In our research we have begun to address this issue by providing the
students with facilities for remembering, annotating, and easily access-
ing past experiments (Section V). However, much more work along
these lines remains to be done.

REFERENCES

Anderson, J. Cognitive psychology and intelligent tutoring. Proceed-
ings of the Cognitive Science Society Conference, 1984, pp. 37-43.

Brown, J. S., R. Burton, and J. de Kleer. Pedagogical, natural
language, and knowledge engineering techniques in SOPHIE I, II
and III. In D. Sleeman, and J. S. Brown (eds.), Intelligent Tutor-
ing Systems. New York: Academic Press, 1982.

Burdorf, C, and J. Marti. Minimizing interprocessor communication
overhead in Lisp programs. Submitted to Software Practice and
Experience, January 1987.

Burton, R. R., and J. S. Brown. An investigation of computer coaching
for informal learning activities. In D. Sleeman and J. S. Brown
(eds.), Intelligent Tutoring Systems. New York: Academic Press,
1982.

Clancey, W. J. Transfer of Rule-Based Expertise Through a Tutorial
Dialogue. Ph.D. Thesis, Stanford University.

 . Tutoring rules for guiding a case method dialogue. In D. Slee-
man and J. S. Brown (eds.), Intelligent Tutoring Systems. New
York: Academic Press, 1982.

Davis, R. Knowledge acquisition in rule-base systems: Knowledge
about representation as a basis for system construction and
maintenance. In D. Waterman and F. Hayes-Roth (eds.),
Pattern-Directed Inference Systems. New York: Academic Press,
1978.

Goldman, A. A Theory of Action. New York: Prentice-Hall, 1976.
Goldstein, I., and D. Bobrow. Representing design alternatives. In

Proceedings of the Conference on Artificial Intelligence and the
Simulation of Behavior. Amsterdam, July, 1980.

Hollan, J. D., and E. L. Hutchins. STEAMER: An Interactive
Inspectable Simulation-Based Training System. NPRDC Techni-
cal Report, 1982.

Jefferson, D. R., and H. Sowizral. Fast Concurrent Simulation Using
the Time Warp Mechanism, Part I: Local Control. The RAND
Corporation, N-1906-AF, December 1982.

Klahr, P., D. McArthur, S. Narain, and E. Best. SWIRL: Simulating
Warfare in the ROSS Language. The RAND Corporation,
N-1885-AF, September, 1982.

43

44

Klahr, P., J. Ellis, W. Giarla, S. Narain, E. Cesar, and S. Turner.
TWIRL: Tactical Warfare in the ROSS Language. The RAND
Corporation, R-3158-AF, September 1984.

McArthur, D., P. Klahr, and S. Narain. The ROSS Language Manual.
The RAND Corporation, N-1854-1-AF, September 1985.

McArthur, D, C. Stasz, and J. Hotta. Learning problem-solving skills
in algebra. To appear in The Journal of Educational Technology
Systems, 1987.

Sleeman, D., and J. S. Brown. Intelligent Tutoring Systems. New
York: Academic Press, 1982.

Smith, P. (ed). Computer-Assisted Learning. New York: Pergamon
Press, 1981.

Weinreb, D., and D. Moon. The Lisp Machine Manual. Cambridge,
Mass.: Massachusetts Institute of Technology, 1982.

RAND/R-3443-DARPA/RC

